References

REFERENCES

1. Seifert, A. W. & Maden, M. New insights into vertebrate skin regeneration. Int. Rev. Cell Mol. Biol. 310, 129–69 (2014).

2. Denis, J.-F., Lévesque, M., Tran, S. D., Camarda, A.-J. & Roy, S. Axolotl as a Model to Study Scarless Wound Healing in Vertebrates: Role of the Transforming Growth Factor Beta aaSignaling   Pathway. Adv. Wound Care 2, 250–260 (2013).

3. Sen, C. K. et al. Human skin wounds: a major and snowballing threat to public health and the economy. Wound Repair Regen. 17, 763–71 (2009).

4. Block, L., Gosain, A. & King, T. W. Emerging Therapies for Scar Prevention. Adv. Wound Cblockbloare 4, 607–614 (2015).

5. Peck, M. D. Epidemiology of burns throughout the world. Part I: Distribution and risk factors. Burns 37, 1087–100 (2011).

6. Yannas, I. V, Tzeranis, D. & So, P. T. Surface biology of collagen scaffold explains blocking of wound contraction and regeneration of skin and peripheral nerves. Biomed. Mater. 11, aa014106   (2015).

7. Nathoo, R., Howe, N. & Cohen, G. Skin substitutes: an overview of the key players in wound management. J. Clin. Aesthet. Dermatol. 7, 44–8 (2014).

8. Trautinger, F., Kokoschka, E. M. & Menzel, E. J. Antibody formation against human collagen and C1q in response to a bovine collagen implant. Arch. Dermatol. Res. 283, 395–9 (1991).

9. Charriere, G., Bejot, M., Schnitzler, L., Ville, G. & Hartmann, D. J. Reactions to a bovine collagen implant. Clinical and immunologic study in 705 patients. J. Am. Acad. Dermatol. 21, 1203–8   (1989).

10. Wenz, B., Oesch, B. & Horst, M. Analysis of the risk of transmitting bovine spongiform encephalopathy through bone grafts derived from bovine bone. Biomaterials 22, 1599–606 (2001).

11. Grabenstein, J. D. What the world’s religions teach, applied to vaccines and immune globulins. Vaccine 31, 2011–23 (2013).

12. Bayat, A., McGrouther, D. & Ferguson, M. Skin scarring. BMJ 326, 88–92 (2003).

13. McCusker, C., Bryant, S. V. & Gardiner, D. M. The axolotl limb blastema: cellular and molecular mechanisms driving blastema formation and limb regeneration in tetrapods. Regeneration 2,   54–71 (2015).

14. McCusker, C. & Gardiner, D. M. The axolotl model for regeneration and aging research: A mini-review. Gerontology 57, 565–571 (2011).

15. Seifert, A. W. et al. The influence of fundamental traits on mechanisms controlling appendage regeneration. Biol. Rev. Camb. Philos. Soc. 87, 330–45 (2012).

16. Reiß, C., Olsson, L. & Hoßfeld, U. The history of the oldest self-sustaining laboratory animal: 150 years of axolotl research. J. Exp. Zool. B. Mol. Dev. Evol. 324, 393–404 (2015).

17. Dictionary, O. E. ‘neoteny, n.’. . at <http://www.oed.com/view/Entry/126078>

18. Ferguson, M. W. J. et al. Scar formation: the spectral nature of fetal and adult wound repair. Plast. Reconstr. Surg. 97, 854–60 (1996).

19. Dent, J. Limb regeneration in larvae and metamorphosing individuals of the South African clawed toad. J. Morphol. 110, 61–77 (1962).

20. Seifert, A. W., Monaghan, J. R., Voss, S. R. & Maden, M. Skin regeneration in adult axolotls: a blueprint for scar-free healing in vertebrates. PLoS One 7, e32875 (2012).

21. Coots, P. S. & Seifert, A. W. in Salamanders in Regeneration Research: Methods and Protocols (eds. Kumar, A. & Simon, A.) 1290, 141–5 (Springer Science+Business Media, 2015).

22. Bryant, S. V., Endo, T. & Gardiner, D. M. Vertebrate limb regeneration and the origin of limb stem cells. Int. J. Dev. Biol. 46, 887–896 (2002).

23. Menger, B. et al. AmbLOXe--an epidermal lipoxygenase of the Mexican axolotl in the context of amphibian regeneration and its impact on human wound closure in vitro. Ann. Surg. 253,   410–8 (2011).

24. Makanae, A., Hirata, A., Honjo, Y., Mitogawa, K. & Satoh, A. Nerve independent limb induction in axolotls. Dev. Biol. 381, 213–26 (2013).

25. Makanae, A., Mitogawa, K. & Satoh, A. Co-operative Bmp- and Fgf-signaling inputs convert skin wound healing to limb formation in urodele amphibians. Dev. Biol. 396, 57–66 (2014).

26. Clark, R. A. F. in The Molecular and Cellular Biology of Wound Repair (ed. Clark, R. A. F.) 3–50 (Springer US, 1988). doi:10.1007/978-1-4899-0185-9_1

27. Vinarsky, V., Atkinson, D. L., Stevenson, T. J., Keating, M. T. & Odelberg, S. J. Normal newt limb regeneration requires matrix metalloproteinase function. Dev. Biol. 279, 86–98 (2005).

28. Stocum, D. L. & Cameron, J. A. Looking proximally and distally: 100 years of limb regeneration and beyond. Dev. Dyn. 240, 943–68 (2011).

29. Minette, H. P. Epidemiologic aspects of salmonellosis in reptiles, amphibians, mollusks and crustaceans--a review. Int. J. Zoonoses 11, 95–104 (1984).

30. Alworth, L. C. & Harvey, S. B. IACUC issues associated with amphibian research. ILAR J. 48, 278–89 (2007).

31. Chen, X. & Stocum, D. L. Axolotl Xenografts Improve Regeneration of Xenopus Hind Limbs. in IUPUI Research Day (2013).

32. Phan, A. Q. et al. Positional information in axolotl and mouse limb extracellular matrix is mediated via heparan sulfate and fibroblast growth factor during limb regeneration in the axolotl (   Ambystoma mexicanum ). Regeneration 2, 182–201 (2015).

 



Address

13709 Progress Blvd, Box 11

Alachua, FL 32615

Copyright 2019. All Right Reserved / MKT-001 Rev 0 / Designed By SPG